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Abstract. The formation of spherical polaron clusters is studied within the Fröhlich polaron theory. In a
dilute polaron gas, using the non-local statistical approach and the polaron pair interaction obtained within
the Pekar strong coupling theory, the homogeneous phase results to be unstable toward the appearance of
polaron clusters. The physical conditions of formation for the clusters are determined calculating the critical
values of electron-phonon interaction for which bound states in the collective polaron potential develop.
Finally the sequence in the filling of the states is found and the stability of the clusters is assessed.

PACS. 71.38.-k Polarons and electron-phonon interactions

1 Introduction

In the last years the presence of strong electron-phonon
coupling and polaronic effects has been pointed out by
many experimental results in several compounds, such
as high-temperature cuprate superconductors [1], colossal
magnetoresistance manganites [2], nickelates and quasi-1D
materials organic conjugated polymers [3]. Furthermore it
has been debated if the electron-phonon interaction can
give rise in perovskite oxides to charge-ordered states or
to more complex electronic phases such as stripes, strings
or clustered states [4].

The large amount of experimental data has renewed
the interest in studying simplified electron-phonon cou-
pled systems of the Holstein [5] or Fröhlich [6] type. The
formation of the polaron have been long studied in the
frame of the Fröhlich model, where the polar long-range
interaction between electronic and ionic charges is taken
into account and the medium is considered continuous. For
its relation to theories regarding cuprate superconductors,
large attention has been devoted to the formation of the
bipolaron (bound state of two polarons), establishing the
range of the values of the electron-phonon coupling con-
stant and of the dielectric parameters of medium which
allow its existence [7]. Also the binding energy, the ef-
fective mass, its internal structure and optical features
have been studied [8–12]. Actually many methods have
been used to study the bipolaron formation in the Fröhlich
scheme: Lee-Low-Pines approach for intermediate values
of the electron-phonon coupling constant [9], Pekar po-
laron strong coupling theory [8,11,12], and path-integral
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technique [10]. They give the possibility to define an ef-
fective polaron-polaron potential, which is repulsive both
at large and small distance between the particles, while
it is attractive at intermediate distance. This polaron-
polaron interaction has been used as starting point for
many-body calculations finding that, for densities smaller
than those typical of metals, the many-polaron system
exhibits a charge density instability in the intermediate
coupling regime [13].

A related research activity concerns the study of the
conditions under which electronic or polaronic Wigner
crystals [14,15], polaron molecules or clusters [16] and
strings [17] can form. Indeed in the regime of very low
densities the Wigner crystal of electrons can transform
into a polaronic crystal by increasing the electron-phonon
coupling [14]. However increasing the density at strong
electron-phonon coupling the Wigner crystal of polarons
becomes unstable [15]. Such an instability suggests that
novel types of electronic or polaronic structures such as
clusters, molecules or strings can be stabilized by a strong
electron-phonon interaction. Actually the molecules can
arise at conditions determined by the structure of an ef-
fective interaction at short and long distances [16]. Their
behavior is very quantum, and they can assume a stringed
form. It has been suggested that in perovskite oxides, such
as manganites and cuprates, these molecules could repre-
sent the intermediate step of more complex structures such
as stripes [17]. Finally the electronic and ionic structure
of Metal-Ammonia solutions [18,19] represents a system
where polaronic clusters can be actually observed.

In this work we start from the knowledge of the
effective polaron-polaron interaction within the Pekar
strong coupling theory [8,9,11,22]. Using the non-local
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statistical approach [12,23], we show that in the homoge-
neous phase the mode due to the collective polaron poten-
tial is unstable suggesting that polaron clusters can form
in the system. Next we show that there is a range of values
of the electron-phonon interaction and of the static and
high frequency dielectric constants which allow the forma-
tion of clusters with a number of polarons larger than two.
Finally we discuss some features of the cluster such as its
radius and its stability.

In Section 2 we discuss the basic equations; in Section 3
we analyze the collective excitations of the homogeneous
polaron phase and its instability due to the attractive in-
teraction between polarons; in Section 4 we indicate the
conditions for which the polaron cluster forms, we discuss
the shell structure in the cluster and finally we study the
stability of the polaron clusters.

2 Basic equations

In the system we have two types of particles, the po-
larons and the ions, with distribution functions fp(�r, �v, t)
and fi(�r, �v, t), respectively, in the single-particle phase
space. In the non-local and non-linear Vlasov kinetic
equations [22] the distribution functions fp(�r, �v, t) and
fi(�r, �v, t) are solutions of the equations

∂fp(�r, �v, t)
∂t

+ �v · �∇rfp(�r, �v, t)

− 1
mp

�∇r [U(�r, t) − eΦ(�r, t)] · �∇vfp(�r, �v, t) = 0 (1)

∂fi(�r, �v, t)
∂t

+ �v · �∇rfi(�r, �v, t)

− e

mi

�∇rΦ(�r, t) · �∇vfi(�r, �v, t) = 0, (2)

where mp and mi are the effective masses of polaron and
ion, respectively, e is the electron charge, and U(�r, t) is
the collective self-consistent potential

U(�r, t) =
∫

d�r ′d�v ′K (|�r − �r ′|) fp (�r ′, �v ′, t) , (3)

with the kernel K indicating the polaron-polaron potential
depending only on the relative distance between particles.
The distribution function fp is determined not only by the
polaron collective potential U but also by the electrostatic
potential Φ arising from the non-punctual compensation
between the polaron and ionic charges. Indeed the poten-
tial Φ satisfies the Poisson equation

∆Φ(�r, t) = −4πe

εs
ρ(�r, t), (4)

where the density ρ(�r, t) is defined as

ρ(�r, t) = ρi(�r, t) − ρp(�r, t)

=
∫

d�vfi(�r, �v, t) −
∫

d�vfp(�r, �v, t). (5)

Fig. 1. Polaron-polaron potential K (in units of 2α2
�ω0) as a

function of the distance ρ (in units of a∗
0) for different values

of the ratio ε∗/ε∞: solid (ε∗/ε∞ = 1.00), large dot (ε∗/ε∞ =
1.02), dash (ε∗/ε∞ = 1.05), dash-dot (ε∗/ε∞ = 1.08), small
dot (ε∗/ε∞ = 1.10).

We note that the force acting on the ions is related only
to the electrostatic potential Φ screened by the static di-
electric constant εs.

In order to solve the Vlasov equations, the polaron-
polaron potential K has to be specified. We use the
potential K obtained within the Pekar strong coupling
bipolaron theory [8,11,12,24] which has been adapted in
order to find reliable results in the intermediate to strong
coupling regime. This polaron-polaron potential is attrac-
tive at intermediate distances, this behaviour resulting by
the Fröhlich interaction and effects of quantum mechani-
cal exchange and inter-electron correlations. Moreover the
potential depends on the ratio ε∗/ε∞, where ε∗ is defined
through the equation 1/ε∗ = 1/ε∞ − 1/εs, with ε∞ high
frequency dielectric constant. In Figure 1 we show the po-
tential K for different values of the ratio ε∗/ε∞ when the
bipolaron is in its singlet ground-state and the asymp-
totic energy of the two free polarons has been subtracted.
Throughout the paper, the values 1.10, 1.08, 1.05, 1.02
and 1.00 are used for the ratio ε∗/ε∞, i.e. the ratio εs/ε∞
varies from 10 to infinity.

The potential K obtained within the Pekar strong cou-
pling theory can be approximated by the following ana-
lytical expression

K(r) = 2α2
�ω0

[
(ε∗/ε∞ − 1)a∗

0

r
+ K1(r)e−δr

]
, (6)

where K1(r) is given by

K1(r) = d + cr2 + [a + b(r − ρ0)2]
(
1 − e−γr

)

− (ε∗/ε∞ − 1)a∗
0

r
. (7)

In equation (6) α = (1/2ε∗)(e2/�ω0)(2m∗ω0/�)1/2 is the
dimensionless electron-phonon coupling constant, m∗ is
the effective mass at the bottom of the conduction band,
ω0 is the longitudinal optical phonon frequency in the long
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Table 1. Parameters of the polaron-polaron potential K.

ε∗/ε∞ a b (a∗−2
0 ) c (a∗−2

0 ) d γ (a∗−1
0 ) δ (a∗−1

0 ) ρ0 (a∗
0)

1.10 −7.95 × 10−7 6.875 × 10−3 −6.821 × 10−3 1.4 × 10−3 0.2475 0.2047 7.95 × 10−2

1.08 −5.175 × 10−7 6.885 × 10−3 −6.857 × 10−3 0.001 0.245 0.20 8.17 × 10−2

1.05 −1.907 × 10−5 6.855 × 10−3 −6.852 × 10−3 8.583 × 10−4 0.25 0.19 8.81 × 10−2

1.02 −6.0 × 10−5 6.9188 × 10−3 −6.887 × 10−3 −3.097 × 10−3 0.286 0.166 9.25 × 10−2

1.00 −7.92 × 10−4 6.709 × 10−3 −6.677 × 10−3 −7.750 × 10−2 0.32 0.15 0.1087

wave-length approximation, and a∗
0 = α−1(�/2m∗ω0)1/2

is the effective Bohr radius. The parameters a, b, c, d, γ,
δ, and ρ0 of the potentials in equations (6) and (7) have
been obtained by an accurate fit of the polaron-polaron
potential in the Pekar theory [8,11,12,24] and are listed
in Table 1. In the numerical calculations it is furthermore
assumed ε∞ = 2, m∗ = m with m electron mass, and
�ω0 = 0.03 eV.

The Vlasov equations in equations (1) and (2) are valid
in the classical limit and the use of polaron-polaron in-
teraction (6) is accurate for a dilute system. Therefore
the temperature T has to be high compared with the de-
generacy temperature of polarons: T > �

2N
2/3
p /mpkB,

with Np polaron density and kB Boltzmann constant.
This condition is verified at reasonable temperatures if
Np < 5×1018 cm−3. We note that for these densities some
energy scales, for example the polaron plasmon frequency,
are smaller or of the same order than the optical phonon
frequency. Clearly, for the temperatures considered above,
quantum effects in the statistics can be neglected and the
Boltzmann-Maxwell distribution function can be used at
the thermodynamic equilibrium.

3 Collective excitations of the polaron system

In this section we analyze the collective excitations of the
polaron system. As discussed in the following Section 3.1,
the polaron plasmon is obtained neglecting the role of the
collective potential U in the Vlasov equations (1) and (2).
On the contrary in Section 3.2 we will examine the col-
lective excitations induced by the potential U in absence
of the electrostatic potential Φ. These density oscillations
are completely different from the polaron plasmons, since
at small values of the momentum k they have a dispersion
relation approximately proportional to k.

The procedure of calculation of these two types of exci-
tations is the same. Indeed only the role of the polarons is
mainly considered and the Vlasov equations are linearized
taking

fp(�r, �v, t) = f0(�v) + φ(�r, �v, t), (8)

where f0(�v) is the Maxwell distribution function

f0(�v) = Np

(
mp

2πkBT

)3/2

e
−mpv2

2kB T (9)

associated to the homogeneous spatial distribution of the
particles and φ(�r, �v, t) is strongly smaller than f0(�v).

Therefore it is assumed that the perturbations induced
by the time-dependent potentials are weak.

3.1 Polaron plasmons

The polaron plasmons are the collective excitations in
the limit of collective potential U zero. In this case the
external force affecting the polaron distribution can be
simply related to an electrical field �E(�r, t) defined as
�E(�r, t) = −�∇Φ(�r, t). Neglecting second order terms, the
equation (1) becomes

∂φ(�r, �v, t)
∂t

+ �v · �∇rφ(�r, �v, t) =
e

mp

�E(�r, t) · �∇vf0(�v). (10)

Fourier transforming in space and time, one obtains

φ(�k,�v, ω) =
e �E(�k, ω)

imp(�k · �v − ω)
· �∇vf0(�v), (11)

where the coefficient of �∇vf0(�v) represents the amplitude
of momentum that the polaron acquires under the field �E.
Clearly this quantity has to be small compared with the
mean momentum obtained through the equilibrium dis-
tribution f0(�v).

Using equation (5), the Fourier transform of particle
density ρ can be evaluated. This last quantity is connected
to the polarization �P of the system since i�k · �P = − e

εs
ρ.

Employing the pole-rule defined by Landau [28], we obtain
the relation

i�k· �P (�k, ω) = −e2

εs

�E(�k, ω)·
∫

d�v
�∇vf0(�v)

imp(�k · �v − ω) − iη
, (12)

where η is infinitesimal. If the field �E and �P are directed
along �k, then the longitudinal dielectric constant εl(�k, ω)
can be derived by means of the equation 4π �P = (εl −1) �E,
yielding

εl(�k, ω) = 1 − 4πe2

εsk2

∫
d�v

�k · �∇vf0(�v)

imp(�k · �v − ω) − iη
. (13)

The dielectric constant of equation (13) is a complex quan-
tity implying that the energy of the electrical field can be
dissipated in the medium (Landau damping). Hence longi-
tudinal electrical waves can propagate through the system
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and their dispersion relation is obtained by the equation
εl(�k, ω) = 0. Supposing ω � kvT , with vT = (kBT/mp)1/2

mean quadratic velocity along the direction of propaga-
tion, the zeros of the equation can be derived. At low
order in momentum the real part of the frequency is

ω = ωpp

(
1 +

3
2
k2a2

p

)
, (14)

with ap = (εskBT/4πNpe
2)1/2 and ωpp polaron plasma

frequency defined as

ωpp = vT /ap =

√
4πNpe2

εsmp
, (15)

while the imaginary part is exponentially small. As ex-
pected in the limit ωpp ≤ ω0, the plasma frequency is
screened by the static dielectric constant εs [29].

In this derivation we have taken into account only the
polaron contribution. Within the same approach it would
be possible to consider also the role of the ionic plasmons
through equation (2) and the interplay between polaronic
and ionic oscillations [28]. However, it is more interesting
to focus on the collective excitations due to the polaron
collective potential U .

3.2 Excitations due to the collective potential U

In this subsection we consider the time-dependent kinetic
equations (1) for the polaron distribution function neglect-
ing the contribution from the electrostatic potential Φ.
We investigate the propagation of longitudinal waves with
lengths larger than the polaron-polaron distance in the
bipolaron. Therefore our aim will be the calculation of
the dispersion relationship linking frequency ω and wave
vector k in the limit k → 0.

If one neglects second order terms, the Vlasov equa-
tion (1) becomes

∂φ(�r, �v, t)
∂t

+ �v · �∇rφ(�r, �v, t) =

1
mp

�∇vf0(�v) · �∇r

∫
d�r ′d�v ′K(|�r − �r ′|)φ(�r ′, �v ′, t). (16)

The solution of the integro-differential equation (16) can
be written in the following form [22]

φ(�r, �v, t) =
1

2mp

�∇vf0(�v) · �∇r

∫
d�r ′

×
[∫ t

t0

dτK(|�r − �v(t − τ) − �r ′|)ρ(�r ′, τ)

+
∫ t

t1

dτK(|�r − �v(t − τ) − �r ′|)ρ(�r ′, τ)
]

, (17)

Fig. 2. Fourier transform σ (in units of 2α2
�ω0 a∗3

0 ) of the
polaron-polaron potential K as a function of the momentum k
(in units of a∗−1

0 ) for different values of the ratio ε∗/ε∞: 1-solid
(ε∗/ε∞ = 1.10), 2-dot (ε∗/ε∞ = 1.08), 3-dash-dot (ε∗/ε∞ =
1.05), 4-dash (ε∗/ε∞ = 1.02), 5-solid (ε∗/ε∞ = 1.00).

with t0 ≤ t ≤ t1 and ρ(�r, t) defined in equation (5). Inte-
grating with respect to the velocity, one obtains

ρ(�r, t) =
1

2mp

∫
d�v �∇vf0(�v) · �∇r

∫
d�r ′

×
[∫ t

t0

dτK(|�r − �v(t − τ) − �r ′|)ρ(�r ′, τ)

+
∫ t

t1

dτK(|�r − �v(t − τ) − �r ′|)ρ(�r ′, τ)
]

. (18)

Considering the spatial and temporal Fourier transform of
the density ρ, equation (18) becomes

ρ(�k, ω) =
1
2

∫ t

−∞
dτe−iω(t−τ)G(�k, t − τ)ρ(�k, ω)

+
1
2

∫ ∞

t

dτe−iω(t−τ)G(�k, t − τ)ρ(�k, ω), (19)

where G(�k, t) is defined by

G(�k, t) =
iσ(k)
mp

�k ·
∫

d�vei�k·�vt �∇vf0(�v), (20)

with σ(k) Fourier transform of the polaron-polaron po-
tential shown in Figure 2 for different values of the
ratio ε∗/ε∞. The condition of existence of the nontrivial
solutions of the equation (19) is the following

∫ ∞

0

dtG(�k, t) cos(ωt) = 1, (21)

that links implicitly the frequency ω to the momentum �k.
We obtain the dispersion for small k in the form

ω =
( vT

21/6

)
k

(
1 +

kBT

Npσ(k)

)1/3

, (22)

where vT = (kBT/mp)1/2 is the mean quadratic velocity
along the direction of propagation. Therefore the system
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exhibits a collective mode sustained by the coherent self-
consistent interaction arising from neighboring particles.
Clearly these excitations are well defined if

1 +
kBT

Npσ(k)
> 0. (23)

As deduced from Figure 2, the collective mode can cer-
tainly propagate for values of k around 0 where σ(k) is
positive. The Fourier transform σ at k = 0 is given by
the spatial integral of the potential K that, as shown in
Figure 1, becomes completely negative as the ratio ε∗/ε∞
approaches the unity. By fixing the ratio ε∗/ε∞ and in-
creasing the electron-phonon coupling constant α, the po-
tential σ(k) deepens implying that the region of stability
in k is reduced. So there is a range of values of the mo-
mentum where equation (23) is violated. This suggests the
possibility that the particles in equilibrium are not longer
single polarons, but, due to the attractive effect of the in-
teraction, a polaron of the system can bind another one
in order to form a bipolaron. Clearly two particles could
form with a third a cluster of more than two particles.
Therefore it is important to study directly the formation
of polaron clusters induced by the collective potential U .

4 Polaron clusters

In this section we will study the solutions of the Vlasov
equations (1) and (2) in the temporal stationary regime.
Clearly these equations are satisfied if the polaron fp and
ion fi distribution functions are independent of position.
Our aim is to study the solutions of equations (1) and (2)
near to the homogeneous ones.

In stationary conditions, we write for the polaron and
ion distribution function

fj(�r, �v) = ρj(�r)wj(�v), (24)

where j stands for p or i, ρj(�r) and wj(�v) the spatial and
velocity distribution functions, respectively. If the velocity
distribution function is that of the equilibrium, then from
equations (1) and (2) the spatial distribution functions of
polarons and ions can be deduced as

ρp(�r) = Npe
−U(�r)−eΦ(�r)

KBT (25)

and
ρi(�r) = Nie

− eΦ(�r)
KBT , (26)

where Ni is the ion concentration, such that Np = Ni =
N0 since the system has charge neutrality. Substitut-
ing (25) and (26) in (3) and (4), we obtain the coupled
equations

U(�r) =
∫

d�r ′K(|�r − �r ′|)ρp(�r ′) (27)

and

∆Φ(�r) =
(
−4πe

εs

)
[ρp(�r) − ρi(�r)] , (28)

that allow to determine self-consistently both the collec-
tive polaron U(�r) and electrostatic Φ(�r) potentials.

The exact solution of equations (27) and (28) is a
formidable task. Therefore, considering the dependence of
the potential K on the relative distance, we iteratively
build a solution for a spherical symmetric cluster of ra-
dius R obtaining at the lowest order Φ0(r) = 0 and

U0(r) =

{
N0

∫
d�r ′K(|�r ′ − �r|)|, r ≤ R

N0

∫
d�r ′K(|�r ′ − �r|)|, r > R.

(29)

We note that the collective potential U0(r) is directly
proportional to the particle density N0 and through K
it depends on the electron-phonon coupling constant α.
Through the use of the coordinate transformation

s2 = r2 + x2 − 2xr cos(θ), sds = xr sin(θ)dθ, (30)

the potential inside the sphere U
(in)
0 (r) is written as

U
(in)
0 (r) =

2πN0

r

[∫ r

0

dxx

∫ r+x

r−x

dssK(s)

+
∫ R

r

dxx

∫ r+x

r−x

dssK(s)

]
, r ≤ R, (31)

and connects with continuity to that outside U (out)(r)

U
(out)
0 (r) =

2πN0

r

∫ R

0

dxx

∫ r+x

r−x

dssK(s), r > R. (32)

The local modifications of the spatial distribution function
due to the attractive forces are described by the polaron
spatial density N1(r)

N1(r) = N0

(
−U0(r)

kBT

)
(33)

showing that the distribution of the polarons is deter-
mined by the collective potential U0(r). Actually the
charge neutrality is locally perturbed and the increase of
the polaron density can be consistent with a bound cluster
of particles.

In Figures 3a and b we show the collective potential
for different radii R and for the value of ε∗/ε∞ = 1.05.
The qualitative behaviours are similar in all the considered
cases except for ε∗/ε∞ = 1.00. For a fixed ratio ε∗/ε∞,
U0(r) is negative in a region around r = 0, it assumes the
minimum value at r = 0 and becomes positive at large
values of r. The quantity U0(0) is first decreasing and then
increasing as function of R, so that it exists a value of R̄
which gives the minimum value of U0(0). Only in the case
ε∗/ε∞ = 1 (i.e. εs = ∞) U0(0) is always decreasing as
function of R. In Figure 4 we show the quantity U0(0) as
function of R for all the indicated values of ε∗/ε∞, except
for ε∗/ε∞ = 1. It occurs that the decrease of ε∗/ε∞ implies
the increase of R̄. We give to R̄ the meaning of the best
dimension of the cluster.
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Fig. 3. (a) The collective polaron potential U0 (in units of
2α2

�ω0/N0) as a function of the distance r (in units of a∗
0)

for ε∗/ε∞ = 1.05: 1-solid (radius of the cluster R = 7a∗
0),

2-dash (radius of the cluster R = 11a∗
0), 3-dash-dot (radius of

the cluster R = 15a∗
0). Optimal radius of the cluster is 15a∗

0 .
The dot curve defines the boundaries of the cluster. (b) The
collective polaron potential U0 (in units of 2α2

�ω0/N0) as a
function of the distance r (in units of a∗

0) for ε∗/ε∞ = 1.05:
1-solid (radius of the cluster R = 16a∗

0), 2-dash (radius of the
cluster R = 20a∗

0), 3-dash-dot (radius of the cluster R = 22a∗
0).

Optimal radius of the cluster is 15a∗
0 . The dot curve defines the

boundaries of the cluster.

It is important to calculate the minimum values of α
for which the cluster begins to form. We have evaluated
the critical values αc within the full quantum mechanical
approach of a particle in the collective potential U0(r) cal-
culating when the first bound level develops [30]. Hence
the quantity αc indicates the minimum value for which
the bipolaron forms. It has been checked that these val-
ues are only slightly smaller than those obtained in the
next subsection through the statistical model that can be
generalized at arbitrary levels. In particular we will inves-
tigate the resulting shell structure in the cluster.

4.1 Shell structure of the polaron cluster

In analogy with the structure of nuclei [25] and metal
clusters [26], we try now to calculate the conditions for

Fig. 4. The collective polaron potential U0 (in units of
2α2

�ω0/N0) at r = 0 as a function of the cluster radius R
(in units of a∗

0) for different values of the ratio ε∗/ε∞: 1-dot
(ε∗/ε∞ = 1.10), 2-dash-dot (ε∗/ε∞ = 1.08), 3-dash (ε∗/ε∞ =
1.05), 4-solid (ε∗/ε∞ = 1.02).

existence of the polaron clusters and the related shell
structure. For the spherically symmetric collective po-
tential U0(r), we use the same criterion of the atomic
physics regarding the quantum numbers to introduce in
order to characterize the state of a single electron in the
atoms. In other words we introduce the quantum num-
bers of single particle states without considering neither
the electrostatic corrections nor the relativistic ones. In
the statistical model [25,27], the shells with the orbital
quantum number l (l = 0, 1, 2, 3...) begin to form when Nl

defined by

Nl =
4
π�

(
l +

1
2

)∫ R

R1

dr

[
−2mpU0(r) − �

2(l + 1/2)2

r2

]1/2

=
4
π�

(
l +

1
2

)∫ R

R1

dr

[
P 2 − �

2(l + 1/2)2

r2

]1/2

(34)

becomes larger than 1. In the above formula R is the clus-
ter radius, R1 is the lower value of r for which the func-
tion to integrate is zero, P is the maximum polaron mo-
mentum. In the statistical approximation the maximum
momentum P is connected with the local polaron den-
sity N1(r) given in (33) through the relation

P (r) = 2π�

(
3N1(r)

8π

)1/3

, (35)

so that, writing N1(r) = mρ0(r), where m is the number
of the particles involved in the cluster, we have to ensure
that

∫
d�rρ0(r) = 1. Taking into account equation (35), we

find the following equation

1
r

= −1
3

d

dr
ln ρ0(r), (36)

which allows to determine explicitly the value R1.
In Table 2 we have reported the calculated values of

the electron – phonon coupling constants αc,l from which



C.A. Perroni et al.: Formation of polaron clusters 169

Table 2. The critical values of the electron-phonon coupling
constant when the shell with momentum l is filled.

ε∗/ε∞ Electron-phonon coupling constant αc,l

N0 = 1016 cm−3 l = 0 l = 1 l = 2 l = 3

1.10 76.0 89.8 110.7 129.4

1.08 51.5 59.8 73.7 86.1

1.05 32.2 35.0 42.2 48.9

1.02 23.7 25.4 30.4 35.1

N0 = 1017 cm−3

1.10 42.7 50.5 62.3 72.7

1.08 29.0 33.6 41.5 48.4

1.05 18.2 19.7 23.7 27.5

1.02 13.3 14.3 17.1 19.7

1.00 9.8 10.3 12.2 13.9

N0 = 1018 cm−3

1.10 24.0 28.4 35.0 40.9

1.08 16.3 18.9 23.3 27.2

1.05 10.2 11.1 13.4 15.5

1.02 7.5 8.0 9.6 11.1

1.00 5.6 5.8 6.8 7.8

the shell with the indicated value of l begins to be filled.
We find that, increasing the polaron concentration, the
collective potential U0(r) deepens, so that the values of
αc,l decrease. For example, taking ε∗/ε∞ = 1.05, for
N0 = 1018 cm−3 the first shell l = 0 starts to be filled
as soon as αc,0 = 10.2, while for N0 = 1017 cm−3 we have
αc,0 = 18.2. Furthermore, since the increase of the num-
ber l reflects a higher binding energy of the particles in
the cluster, in Table 2 the values of αc,l get enhanced as
a function of l.

Finally we can calculate the sequence of the shell for-
mation in a polaron cluster. In analogy to the filling of
states for nuclear matter and metal clusters [25,26], we
obtain the sequence (1s)2(2p)6(3d)10(2s)2(4f)14 for the
polaron cluster. This order differs from the known order
of filling of electron levels in atoms: in fact shells with 2, 8,
18, 20 polarons are stable. Then it is possible that in the
system stable clusters can form becoming the basic units
in equilibrium at a given temperature.

Finally we can make a rough estimate of Tcr, the high-
est temperature under which the clusters can form or,
better, the lowest temperature above which the polaron
phase is homogeneous. Actually, knowing now the crit-
ical electron-phonon coupling constants that trigger the
cluster formation, we can calculate the temperatures for
which the collective mode discussed in the previous section
becomes unstable signaling the possibility of polaron clus-
ters. The stability condition of the collective mode of the
homogeneous phase is violated when σ(k) vanishes becom-
ing negative at larger values of k. Therefore the polarons
are the carriers at equilibrium approximately for temper-
atures

T > Tcr =
N0|σ(k)|min

kB
, (37)

Table 3. Critical temperatures (in units of 2α2
�ω0/kB) cor-

responding to the filling of the cluster shell with momentum l.

ε∗/ε∞ Critical temperature Tcr

N0 = 1016 cm−3 l = 0 l = 1 l = 2 l = 3

1.10 2.4 3.1 4.7 6.5

1.08 1.6 2.0 3.0 4.1

1.05 0.91 1.1 1.6 2.1

1.02 0.72 0.83 0.6 0.8

1.00 0.84 0.92 1.2 1.7

N0 = 1017 cm−3

1.10 7.0 9.8 15.0 28.4

1.08 4.9 6.2 9.5 12.9

1.05 2.9 3.4 4.9 6.7

1.02 2.3 2.6 3.8 5.0

1.00 2.6 2.9 4.1 5.3

N0 = 1018 cm−3

1.10 22.2 31.1 47.2 64.4

1.08 15.6 19.6 29.8 40.6

1.05 9.2 10.8 15.8 21.1

1.02 7.2 8.2 11.8 15.8

1.00 8.6 9.3 12.7 16.7

where |σ(k)|min is the modulus of the Fourier transform of
the polaron-polaron potential K calculated for the value
of k corresponding to its minimum value (the attractive
part drives the instability) and for the critical values αc,l

of the coupling constant. In Table 3 the critical temper-
atures Tcr are shown. We note that the critical tempera-
ture obtained in equation (37) is a function of the polaron
density also through the constants αc,l that, as reported
in Table 2, are strongly dependent on N0. Since the col-
lective potential responsible for the cluster formation is
proportional to N0, we expect that the critical tempera-
tures strongly increase as a function of the polaron con-
centration, as confirmed by the results of Table 3. Clearly
it is possible to define the critical temperatures for con-
densation of polarons for different shells. Increasing the
quantum number l, the binding energies becomes larger,
the cluster becomes more stable, so that the critical tem-
peratures are enhanced.

In this section we have realized that, at the lowest
order of the iterative procedure used for solving equa-
tions (27) and (28), the electrostatic potential Φ defined
in equation (4) does not affect the cluster formation. How-
ever, at higher orders, the difference between the density
of polarons and ions could perturb the states of the clus-
ter. The frequency scale of such perturbation is close to
the frequency ωpp of the polaron plasma oscillation given
in equation (15). Such fluctuations can contribute to the
broadening of the states determined in the cluster. Ob-
viously the broadening is small if ωpp < ωl, where ωl is
the frequency of motion of the particle in the collective
potential at the level with a quantum number l. From
this inequality it is possible to find the highest value of
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the electron – phonon coupling constant ᾱ, such that for
α < ᾱ the cluster is unstable against these perturbations.
For example, at the concentrations N0 = 1017 cm−3 and
N0 = 1018 cm−3 for l = 0 and ε∗/ε∞ = 1.08, we have
ᾱ = 16.6 and ᾱ = 12.5, respectively. These results do not
contradict the data listed in Table 2. Therefore when the
polaron cluster is formed in the system, it is also stable
against the energy fluctuations of the bound states of the
collective potential U0.

5 Conclusion

Using the statistical model, we have found that clusters
can form in a dilute polaron gas. We have calculated the
critical values of the electron-phonon interaction for which
the ground and excited state shells can be filled. The found
sequence of the shells is analogous to that of the nuclei
and of the metal clusters rather than that of the electron
states in atoms. We have also calculated the stability of
the polaron clusters against the fluctuations of the col-
lective potential. We have found that the values for which
the cluster can form are sufficiently large to assure the sta-
bility of the system. Finally the critical temperature for
the condensation of the polarons in the cluster has been
calculated. Our calculation scheme based on the strong
coupling Fröhlich electron-phonon theory is coherent with
the results since all critical values for the formation of the
clusters are found in the regime of large coupling. Clearly
this implies that the theoretical results can be discussed in
connection with real systems only in situations of poorly
screened strong electron-phonon coupling [18,19].

The system with polaron clusters is characterized by
collective modes different from those of the homogeneous
phase, for example that induced by perturbations which
tend to deform the cluster. In such a case the difficulty
is to solve the time dependent equations starting at the
zero order from the spatially perturbed polaron distribu-
tion function calculated in the previous section. Actually
vibronic modes have been discussed in electronic bound
configurations showing that their frequency is of the or-
der 1014−1015 Hz for typical parameters of metallic ox-
ides [16]. Finally we note that, in the quantum case of high
density and low temperature characteristic of perovskite
oxides, the system can exhibit a true phase transition to-
ward a clustered state that in the one-dimensional case
can be a string [17].
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6. H. Fröhlich, Adv. Phys. 3, 325 (1954)
7. A.S. Alexandrov, N.F. Mott, Polarons and Bipolarons

(World Scientific, Cambridge-Longhborough, 1995)
8. V.K. Mukhomorov, Opt. Spectrosc. 55, 145 (1983)
9. F. Bassani, M. Geddo, G. Iadonisi, D. Ninno, Phys. Rev.

B 43, 5296 (1991)
10. G. Verbist, F.M. Peeters, J.T. Devreese, Phys. Rev. B 43,

2712 (1991)
11. V.K. Mukhomorov, Opt. Spectrosc. 74, 644 (1993)
12. G. Iadonisi, V. Cataudella, G. De Filippis, V.K.

Mukhomorov, Eur. Phys. J. B 18, 67 (2000)
13. G. De Filippis, V. Cataudella, G. Iadonisi, Eur. Phys. J.

B 8, 339 (1999)
14. P. Quemerais, S. Fratini, Int. J. Mod. Phys. B 12, 3131

(1998)
15. S. Fratini, P. Quemerais, Eur. Phys. J. B 14, 99 (2000); S.

Fratini, P. Quemerais, Eur. Phys. J. B 29, 41 (2002)
16. F.V. Kusmartsev, Europhys. Lett. 54, 786 (2001); F.V.

Kusmartsev, Europhys. Lett. 57, 557 (2002)
17. F.V. Kusmartsev, Phys. Rev. Lett. 84, 530 (2000)
18. M. Cohen, J.C. Thompson, Adv. Phys. 17, 857 (1968)
19. M.A. Krivoglaz, Adv. Phys. Sci. (in Russian) 111, 617

(1973)
20. E.A. Kochetov, M.A. Smondyrev, Theor. Math. Physics.

(in Russian) 85, 74 (1990)
21. V.K. Mukhomorov, Opt. Spectr. 77, 14 (1994)
22. A.A. Vlasov, Many-particle theory and its application

to plasma (Gordon and Breach, New York, 1961); A.A.
Vlasov, Nelokal’naia statiaticheskaia mehanica (Nonlocal
statistical mechanics) (in Russian) (Nauka, Moscow, 1978)

23. V.K. Mukhomorov, Phys. Stat. Sol. (b) 219, 71 (2000)
24. V.K. Mukhomorov, J. Phys.: Condens. Matter 13, 3633

(2001)
25. D. Ivanenko, V. Rodichev, Doklady akademii nauk SSSR

(Reports of USSR academy of science) (in Russian) 70,
605 (1950)

26. V. Kresin, Phys. Rev. B 38, 3741 (1988)
27. V.G. Levich, Kurs teoreticheskoi fiziki (Course of theoret-

ical physics) (in Russian), Vol. 2 (Nauka, Moscow, 1962)
28. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Course of

theoretical physics: Physical Kinetics (Pergamon Press,
New York, 1981)

29. G. Mahan, Many-particle physics, 2nd edn. (Plenum Press,
New York, 1990)

30. V.K. Mukhomorov, Physica Scripta 69, 139 (2004)


